Anthropic
Build Scrapybara agents with Anthropic models
Act SDK
Use Anthropic models with the Act SDK:
claude-3-5-sonnet-20241022
with computer use beta
Consume agent credits or bring your own API key. Without an API key, each step consumes 1 agent credit. With your own API key, model charges are billed directly to your Anthropic account.
Python
TypeScript
Import model
1 from scrapybara.anthropic import Anthropic 2 3 # Consume agent credits 4 model = Anthropic() 5 6 # Bring your own API key 7 model = Anthropic(api_key="your_api_key")
Take action
1 from scrapybara import Scrapybara 2 from scrapybara.tools import BashTool, ComputerTool, EditTool 3 from scrapybara.prompts import SYSTEM_PROMPT 4 5 client = Scrapybara() 6 instance = client.start() 7 8 client.act( 9 tools=[ 10 BashTool(instance), 11 ComputerTool(instance), 12 EditTool(instance), 13 ], 14 model=model, 15 system=SYSTEM_PROMPT, 16 prompt="Reseach Scrapybara", 17 )
Legacy Anthropic connector
Legacy Anthropic connector is currently only available for the Python SDK.
1
Basic setup
main.py
1 import asyncio 2 import os 3 import json 4 import base64 5 from io import BytesIO 6 from PIL import Image 7 from IPython.display import display 8 from typing import Any, cast 9 from datetime import datetime 10 11 from anthropic import Anthropic 12 from anthropic.types.beta import ( 13 BetaContentBlockParam, 14 BetaTextBlockParam, 15 BetaImageBlockParam, 16 BetaToolResultBlockParam, 17 BetaToolUseBlockParam, 18 BetaMessageParam, 19 ) 20 21 from scrapybara.anthropic import BashTool, ComputerTool, EditTool, ToolResult, ToolCollection 22 from scrapybara import Scrapybara 23 24 # Initialize Scrapybara 25 scrapybara_client = Scrapybara(api_key="your_scrapybara_api_key") 26 instance = scrapybara_client.start(instance_type="medium") 27 28 # Initialize Anthropic 29 anthropic_client = Anthropic(api_key="your_claude_api_key") 30 31 # System prompt from original Computer Use implementation 32 SYSTEM_PROMPT = """<SYSTEM_CAPABILITY> 33 * You are utilising an Ubuntu virtual machine using linux architecture with internet access. 34 * You can feel free to install Ubuntu applications with your bash tool. Use curl instead of wget. 35 * To open chromium, please just click on the web browser icon or use the (DISPLAY=:1 chromium &) command. Note, chromium is what is installed on your system. 36 * Using bash tool you can start GUI applications, but you need to set export DISPLAY=:1 and use a subshell. For example "(DISPLAY=:1 xterm &)". GUI apps run with bash tool will appear within your desktop environment, but they may take some time to appear. Take a screenshot to confirm it did. 37 * When using your bash tool with commands that are expected to output very large quantities of text, redirect into a tmp file and use str_replace_editor or `grep -n -B <lines before> -A <lines after> <query> <filename>` to confirm output. 38 * When viewing a page it can be helpful to zoom out so that you can see everything on the page. Either that, or make sure you scroll down to see everything before deciding something isn't available. 39 * When using your computer function calls, they take a while to run and send back to you. Where possible/feasible, try to chain multiple of these calls all into one function calls request. 40 * The current date is {datetime.today().strftime('%A, %B %-d, %Y')}. 41 </SYSTEM_CAPABILITY> 42 43 <IMPORTANT> 44 * When using Chromium, if a startup wizard appears, IGNORE IT. Do not even click "skip this step". Instead, click on the address bar where it says "Search or enter address", and enter the appropriate search term or URL there. 45 * If the item you are looking at is a pdf, if after taking a single screenshot of the pdf it seems that you want to read the entire document instead of trying to continue to read the pdf from your screenshots + navigation, determine the URL, use curl to download the pdf, install and use pdftotext to convert it to a text file, and then read that text file directly with your StrReplaceEditTool. 46 </IMPORTANT>"""
2
Define utility functions
main.py
1 def _make_api_tool_result(result: ToolResult, tool_use_id: str) -> BetaToolResultBlockParam: 2 tool_result_content: list[BetaTextBlockParam | BetaImageBlockParam] | str = [] # Changed this line 3 is_error = False 4 if result.error: 5 is_error = True 6 tool_result_content = result.error 7 else: 8 if result.output: 9 tool_result_content.append({ 10 "type": "text", 11 "text": result.output, 12 }) 13 if result.base64_image: 14 tool_result_content.append({ 15 "type": "image", 16 "source": { 17 "type": "base64", 18 "media_type": "image/png", 19 "data": result.base64_image, 20 }, 21 }) 22 return { 23 "type": "tool_result", 24 "content": tool_result_content, 25 "tool_use_id": tool_use_id, 26 "is_error": is_error, 27 } 28 29 def _response_to_params(response): 30 res = [] 31 for block in response.content: 32 if block.type == "text": 33 res.append({"type": "text", "text": block.text}) 34 else: 35 res.append(block.model_dump()) 36 return res 37 38 def _maybe_filter_to_n_most_recent_images( 39 messages: list[BetaMessageParam], 40 images_to_keep: int, 41 min_removal_threshold: int, 42 ): 43 if images_to_keep is None: 44 return messages 45 46 tool_result_blocks = cast( 47 list[BetaToolResultBlockParam], 48 [ 49 item 50 for message in messages 51 for item in ( 52 message["content"] if isinstance(message["content"], list) else [] 53 ) 54 if isinstance(item, dict) and item.get("type") == "tool_result" 55 ], 56 ) 57 58 total_images = sum( 59 1 60 for tool_result in tool_result_blocks 61 for content in tool_result.get("content", []) 62 if isinstance(content, dict) and content.get("type") == "image" 63 ) 64 65 images_to_remove = total_images - images_to_keep 66 images_to_remove -= images_to_remove % min_removal_threshold 67 68 for tool_result in tool_result_blocks: 69 if isinstance(tool_result.get("content"), list): 70 new_content = [] 71 for content in tool_result.get("content", []): 72 if isinstance(content, dict) and content.get("type") == "image": 73 if images_to_remove > 0: 74 images_to_remove -= 1 75 continue 76 new_content.append(content) 77 tool_result["content"] = new_content
3
Define sampling loop
main.py
1 def display_base64_image(base64_string, max_size=(800, 800)): 2 image_data = base64.b64decode(base64_string) 3 image = Image.open(BytesIO(image_data)) 4 5 # Resize if larger than max_size while maintaining aspect ratio 6 if image.size[0] > max_size[0] or image.size[1] > max_size[1]: 7 image.thumbnail(max_size, Image.Resampling.LANCZOS) 8 9 display(image) 10 11 async def sampling_loop(command: str): 12 """ 13 Run the sampling loop for a single command until completion. 14 """ 15 messages: list[BetaMessageParam] = [] 16 tool_collection = ToolCollection( 17 ComputerTool(instance), 18 BashTool(instance), 19 EditTool(instance), 20 ) 21 22 # Add initial command to messages 23 messages.append({ 24 "role": "user", 25 "content": [{"type": "text", "text": command}], 26 }) 27 28 while True: 29 _maybe_filter_to_n_most_recent_images(messages, 2, 2) 30 31 # Get Claude's response 32 response = anthropic_client.beta.messages.create( 33 model="claude-3-5-sonnet-20241022", 34 max_tokens=4096, 35 messages=messages, 36 system=[{"type": "text", "text": SYSTEM_PROMPT}], 37 tools=tool_collection.to_params(), 38 betas=["computer-use-2024-10-22"] 39 ) 40 41 # Convert response to params 42 response_params = _response_to_params(response) 43 44 # Process response content and handle tools before adding to messages 45 tool_result_content: list[BetaToolResultBlockParam] = [] 46 47 for content_block in response_params: 48 if content_block["type"] == "text": 49 print(f"\nAssistant: {content_block['text']}") 50 51 elif content_block["type"] == "tool_use": 52 print(f"\nTool Use: {content_block['name']}") 53 print(f"Input: {content_block['input']}") 54 55 # Execute the tool 56 result = await tool_collection.run( 57 path=content_block["name"], 58 tool_input=cast(dict[str, Any], content_block["input"]) 59 ) 60 61 print(f"Result: {result}") 62 if content_block['name'] == 'bash' and not result: 63 result = await tool_collection.run( 64 path="computer", 65 tool_input={"action": "screenshot"} 66 ) 67 print("Updated result: ", result) 68 69 if result: 70 print("Converting tool result: ", result) 71 tool_result = _make_api_tool_result(result, content_block["id"]) 72 print(f"Tool Result: {tool_result}") 73 74 if result.output: 75 print(f"\nTool Output: {result.output}") 76 if result.error: 77 print(f"\nTool Error: {result.error}") 78 if result.base64_image: 79 print("\nTool generated an image (base64 data available)") 80 display_base64_image(result.base64_image) 81 82 tool_result_content.append(tool_result) 83 84 print("\n---") 85 86 # Add assistant's response to messages 87 messages.append({ 88 "role": "assistant", 89 "content": response_params, 90 }) 91 92 # If tools were used, add their results to messages 93 if tool_result_content: 94 messages.append({ 95 "role": "user", 96 "content": tool_result_content 97 }) 98 else: 99 # No tools used, task is complete 100 break
4
Execute a command
main.py
1 command = "Google Scrapybara" 2 3 # Run the sampling loop for this command 4 await sampling_loop(command)